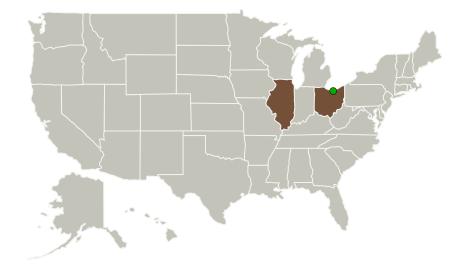
Monofilament Vaporization Propulsion (MVP) System, Phase I



Completed Technology Project (2016 - 2016)

Project Introduction

Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while using safe, clean, propellant without storage or handling concerns. Potential issues with liquid propellants such as freezing and overpressurization in the space environment do not apply to MVP as its propellant is a solid. MVP harnesses technology used in 3d printing applications to feed propellant into proven electrothermal propulsion technology developed by CU Aerospace to provide a safe and reliable system with high performance. The MVP concept accepts a variety of filament propellants, the leading candidate being a commercially available polymer. This should provide 900 N-s total impulse with a 1U (10 cm x 10 cm x 10 cm) system. This imparts 250 m/s Delta-V to a standard 4 kg, 3U CubeSat. Target power consumption for MVP is less than 15 W, and the target price for MVP is \$30K in order to encourage use on low budget missions.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
CU Aerospace, LLC	Lead Organization	Industry	Champaign, Illinois
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Monofilament Vaporization Propulsion (MVP) System, Phase I

Table of Contents

Project Introduction Primary U.S. Work Locations	1
•	1
and Key Partners	Т
Project Transitions	
Images	2
Organizational Responsibility	2
Project Management	
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Monofilament Vaporization Propulsion (MVP) System, Phase I

Completed Technology Project (2016 - 2016)

Primary U.S. Work Locations		
Illinois	Ohio	

Project Transitions

O

June 2016: Project Start

December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139862)

Images

Briefing Chart Image

Monofilament Vaporization Propulsion (MVP) System, Phase I (https://techport.nasa.gov/imag e/133338)

Final Summary Chart Image

Monofilament Vaporization Propulsion (MVP) System, Phase I Project Image (https://techport.nasa.gov/imag e/137213)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

CU Aerospace, LLC

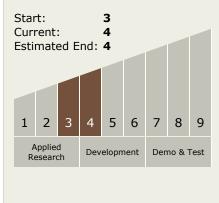
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Curtis Woodruff

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Monofilament Vaporization Propulsion (MVP) System, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

